Dielectrophoresis-activated multiwell plate for label-free high-throughput drug assessment.
نویسندگان
چکیده
Dielectrophoresis (DEP) offers many advantages over conventional cell assays such as flow cytometry and patch clamp techniques for assessing cell electrophysiology as a marker for cancer studies and drug interaction assessment. However, despite the advantages offered by DEP analysis, uptake has been low, remaining largely in the academic arena, due to the process of analysis being time-consuming, laborious, and ultimately allowing only serial analysis on small numbers of cells. In this paper we describe a new method of performing DEP analysis based on laminate manufacturing methods. These use a three-dimensional "well" structure, similar in size and pitch to conventional microtiter well plates, but offer electrodes along the inner surface to allow easy measurement of cell properties through the whole population. The result can then be determined rapidly using a conventional well-plate reader. The nature of the device means that many electrodes, each containing a separate sample, can be tested in parallel, while the mode of observation means that analysis can be combined with simultaneous measurement of conventional fluorimetric well-based assays. Here we benchmark the device against standard DEP assays, then show how such a device can be used to (a) rapidly determine the effects both of ion channel blockers on cancer cells and antibiotics on bacteria and (b) determine the properties of multiple subpopulations of cells within a well simultaneously.
منابع مشابه
Droplet Electrospray Ionization Mass Spectrometry for High Throughput Screening for Enzyme Inhibitors
High throughput screening (HTS) is important for identifying molecules with desired properties. Mass spectrometry (MS) is potentially powerful for label-free HTS due to its high sensitivity, speed, and resolution. Segmented flow, where samples are manipulated as droplets separated by an immiscible fluid, is an intriguing format for high throughput MS because it can be used to reliably and preci...
متن کاملDo Multiwell Plate High Throughput Assays Measure Loss of Cell Viability Following Exposure to Genotoxic Agents?
Cell-based assays in multiwell plates are widely used for radiosensitivity and chemosensitivity assessment with different mammalian cell types. Despite their relative ease of performance, such assays lack specificity as they do not distinguish between the cytostatic (reversible/sustained growth arrest) and cytotoxic (loss of viability) effects of genotoxic agents. We recently reported studies w...
متن کاملSensitive protein:ligand biochemical assays using Corning® Epic® label-free technology on the EnSpire Multimode Plate Reader
While antibody-based fluorescence and radioactive detection technologies have dominated drug discovery and biological research worldwide, label-free technology is becoming widely accepted as a valuable research tool for mechanism-of-action (MOA) studies in lead optimization and receptor pharmacology. Here we introduce EnSpire® Multimode Plate Reader with Corning® Epic® label-free technology. Th...
متن کاملC2lc20893h 627..634
Digital microfluidics (DMF), a fluid-handling technique in which picolitre-microlitre droplets are manipulated electrostatically on an array of electrodes, has recently become popular for applications in chemistry and biology. DMF devices are reconfigurable, have no moving parts, and are compatible with conventional high-throughput screening infrastructure (e.g., multiwell plate readers). For t...
متن کاملCyclic olefin polymers: innovative materials for high-density multiwell plates.
Extension of ultra-high-throughput experiment (UHTE) approaches to new assay methodologies is often limited by compromised data quality when samples are miniaturized. Overcoming this challenge requires attending to all components of an automated laboratory system contributing to assay variability. A key but often neglected source is the high-density multiwell platform or microtiter plate. Mater...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 80 6 شماره
صفحات -
تاریخ انتشار 2008